1.

If the ratio of the roots of `x^2 + bx + c =0` and ` x^2 + qx + r = 0` is same then

Answer» Let `alpha,beta` are the roots of `x^2+bx+c = 0`
Then, `alpha+beta =-b` and `alphabeta = c`
Let `A,B` are the roots of `x^2+qx+r = 0`
Then, `A+B =-q` and `AB = r`
We are given,
`alpha/beta = A/B->(1)`
`=>beta/alpha = B/A->(2)`
Adding (1) and (2),
`alpha/beta+beta/alpha = A/B+B/A`
`=>(alpha^2+beta^2)/(alphabeta) = (A^2+B^2)/(AB)`
`=>((alpha+beta)^2-2alphabeta)/(alphabeta) = ((A+B)^2-2AB)/(AB)`
`=>(b^2-2c)/c = (q^2-2r)/r`
`=>b^2r-2cr = q^2c-2cr`
`=>b^2r = q^2c`
So, option `C` is the correct option.


Discussion

No Comment Found