1.

If the root of x² + px + 12 = 0 are in the ratio 1:3 then what is the value of p ?=====================================================Find the distance between the points ( l + m , n - p ) and ( l - m , n + p )===================================================If are the roots of the equation x² + x√ + = 0 , then find

Answer» x^{2} + px + 12 = 0
so let the ROOTS be 1 d and 3 d
We know that sum of the roots = -b/a
and product of the roots = c/a
1d+3d = - p / 1

1d * 3d = 12
3d^{2} = 12
d = 2
So substituting, 1(2) + 3 (2) = - p
2+6 = - p
p = - 8 or +8 (since root can be both positive and negative)
==================================================
\sqrt{(x1-x2)^{2}+ (y1-y2)^{2}  }DISTANCE between the points = 

\sqrt{ (l+m-(l-m))^{2} +(n-p-(n+p)) ^{2} }=

\sqrt{ (2m)^{2} + (-2p) ^{2} }=

\sqrt{4m+4p}=

2 \sqrt{m+p}= units
=====================================================
\alpha + \beta = -\frac{ \sqrt{\alpha } }{1}

\alpha  \beta =  \frac{ \beta }{1}

\alpha =1

sub alpha value,

1+ \beta = -  \sqrt{1}

1+ \beta =-1

\beta  = - 2




Discussion

No Comment Found