1.

If the sum of all the solutions of the equation `8 cosx.(cos(pi/6+x)cos(pi/6-x)-1/2)=1` in `[0,pi]` is `k pi` then k is equal toA. `20//9`B. `2//3`C. `13//9`D. `8//9`

Answer» Correct Answer - C
`8 cos x (cos (pi/6+x) cos (pi/6-x)-1/2)=1`
`rArr 8 cos x [cos^(2) pi/6- sin^(2) x-1/2]=1`
`rArr 8 cos x [1/4-(1-cos^(2) x)]=1`
`rArr 8cos^(3)x-6 cos x =1`
`rArr 4 cos^(3) x-3 cos x=1/2`
`rArr cos 3 x=1/2="cos" pi/3`
`3x=2npi pm pi/3, n in Z`
Since `x in [0, pi]`, possible values are
`3x=pi/3, 2pi pm pi/3`
`:. x=pi/9, (5pi)/9, (7pi)/9`
sum of solution `=(13 pi)/9`
`:. k=13/9`


Discussion

No Comment Found