1.

If the sum of n terms of an AP is given by Sn = (2n2 + 3n), then find its common difference.

Answer»

Given: Sn = (2n2 + 3n)

To find: find common difference

Put n = 1 we get

S1 = 5 OR we can write

a = 5 …equation 1

Similarly put n = 2 we get

S2 = 14 OR we can write

2a + d = 14

Using equation 1 we get

d = 4

We are given Sn=(2n2+3n)                                        ------(1)

To find the common difference 'd'd=a2-a1                ------(2)

First, to find the second term of the A.P., a2=S- S1   --------(3)

Now, To find S1, put n=1 in equation 1, we get,

S1=(2.12+3.1)=2+3=5                                                -----(4)

  • Here S1=a1

Similarly for S2,put n=1 in equation 1, we get,

S2=(2.22+3.2)=8+6=14                                             ------(5)

  • Here S2=a2+a1 

 Using equation (3),(4) and (5) we get,

a2=14-5=9

Now we know a2=9 and a1=5 ∵ a1=S1

From equation (2),

d=9-5=4

Hence, the common difference for the A.P.  is 4.



Discussion

No Comment Found