InterviewSolution
Saved Bookmarks
| 1. |
If the sum of square of roots of equation `x^2+(p+iq)x+3i=0` is 8, then find |p|+|q| , where p and q are real. |
|
Answer» Correct Answer - p=3, q=1 pr p =-3, q=-1 Let the roots be `alpha` and `beta` We have `alpha + beta = -(p + iq),alpha beta = 3i` Given: `alpha^(2) + beta^(2) = 8` `or (alpha+beta)^(2) - 2alpha beta = 8` `or (p + iq)^(2) -6i(2pq-6) = 8` `or p^(2)-q^(2) + (2pq -6) = 8` `or p^(2) -q^(2) =8 and pq =3` `rArr p = 3 and q=1 or p=-3 and q=-1` |
|