

InterviewSolution
1. |
If the sum of the series 24, 20, 16, …………… is 60, then the number of terms is A) 13 B) 25 C) 10D) 25 |
Answer» Correct option is (C) 10 24, 20, 16, …… is the arithmetic progression whose first term is \(a_1=a=24\;\&\) common difference is \(d=a_2-a_1\) \(=20-24=-4\) Let sum of n terms is 60. i.e., \(S_n=60\) \(\Rightarrow\frac n2[2a+(n-1)d]=60\) \(\Rightarrow n[2\times24+(n-1)\times-4]\) \(=60\times2=120\) \(\Rightarrow n(48-4n+4)=120\) \(\Rightarrow n(52-4n)=120\) \(\Rightarrow n(13-n)=\frac{120}4=30\) \(\Rightarrow n^2-13n+30=0\) \(\Rightarrow n^2-3n-10n+30=0\) \(\Rightarrow n(n-3)-10(n-3)=0\) \(\Rightarrow(n-3)(n-10)=0\) \(\Rightarrow n-3=0\;or\;n-10=0\) \(\Rightarrow n=3\;or\;n=10\) Hence, sum of first 3 terms or sum of first 10 terms of given sequence is 60. Correct option is C) 10 |
|