

InterviewSolution
1. |
If the sum of the three numbers in a G.P is 26 and the sum of products taken two at a time is 156, then the numbers are A) 1, 4, 16B) 2, 6, 18 C) 1, 5, 25 D) 1, 8, 64 |
Answer» Correct option is (B) 2, 6, 18 Let required three numbers in G.P. are a, ar & \(ar^2.\) \(\therefore\) Their sum \(=a+ar+ar^2\) \(\therefore\) \(a+ar+ar^2=26\) (Given) \(\Rightarrow a(1+r+r^2)=26\) ______________(1) Also \(a.ar+ar.ar^2+a.ar^2=156\) (Given) \(a^2r(1+r+r^2)=156\) ______________(2) Divide equation (2) by (1), we get \(\frac{a^2r(1+r+r^2)}{a(1+r+r^2)}=\frac{156}{26}\) \(\Rightarrow ar=6\) ______________(3) Then from (1), we have \(a+ar+ar.r=26\) \(\Rightarrow a+6+6r=26\) \((\because ar=6)\) \(\Rightarrow a+6r=26-6=20\) \(\Rightarrow ar+6r^2=20r\) \(\Rightarrow6+6r^2=20r\) \((\because ar=6)\) \(\Rightarrow6r^2-20r+6=0\) \(\Rightarrow3r^2-10r+3=0\) \(\Rightarrow3r^2-9r-r+3=0\) \(\Rightarrow3r(r-3)-1(r-3)=0\) \(\Rightarrow(r-3)(3r-1)=0\) \(\Rightarrow r-3=0\;or\;3r-1=0\) \(\Rightarrow r=3\;or\;r=\frac13\) From (3), we have \(a=\frac6r=\frac63=2\) or \(a=\frac6r=\frac6{\frac13}=18\) If r = 3 then a = 2 or if \(r=\frac13\) then a = 18 Case I :- r = 3 & a = 2 \(\therefore ar=2\times3=6\) \(ar^2=2\times9=18\) Hence, required number are 2, 6 and 18. Case II :- If \(r=\frac13\) & a = 18 \(\therefore ar=\frac{18}3=6\) & \(ar^2=\frac{18}9=2\) Hence, required numbers in G.P. are 2, 6 & 18 or 18, 6, 2. Alternate :- Let \(a,ar,ar^2\) be required three numbers in G.P. \(\therefore a+ar+ar^2=26\) \(\Rightarrow a(1+r+r^2)=26\) _______________(1) And \(a.ar+ar.ar^2+ar^2.a=156\) \(\Rightarrow a^2r(1+r+r^2)=156\) _______________(2) Divide equation (2) by (1), we get \(\frac{a^2r(1+r+r^2)}{a(1+r+r^2)}=\frac{156}{26}=6\) \(\Rightarrow ar=6\) _______________(3) Put ar = 6 in equation (1), we get \(a+6+6r=26\) \(\Rightarrow a+6r=26-6=20\) \(\Rightarrow ar+6r^2=20r\) (Multiply both sides by r) \(\Rightarrow6+6r^2-20r=0\) \(\Rightarrow3r^2-10r+3=0\) \(\Rightarrow3r^2-9r-r+3=0\) \(\Rightarrow3r(r-3)-1(r-3)=0\) \(\Rightarrow(r-3)(3r-1)=0\) \(\Rightarrow r-3=0\;or\;3r-1=0\) \(\Rightarrow r=3\;or\;r=\frac13\) Case I :- r = 3 then \(a=\frac6r\) \(=\frac63=2\) \(\therefore ar=2\times3=6\) \(ar^2=2\times9=18\) Case II :- \(r=\frac13\) then \(a=\frac6r=\frac6{\frac13}\) \(=6\times3=18\) \(\therefore ar=18\times\frac13=6\) and \(ar^2=18\times\frac19=2\) Hence, required numbers are 2, 6, 18. Correct option is B) 2, 6, 18 |
|