1.

If the sum of the three numbers in a G.P is 26 and the sum of products taken two at a time is 156, then the numbers are A) 1, 4, 16B) 2, 6, 18 C) 1, 5, 25 D) 1, 8, 64

Answer»

Correct option is (B) 2, 6, 18

Let required three numbers in G.P. are a, ar & \(ar^2.\)

\(\therefore\) Their sum \(=a+ar+ar^2\)

\(\therefore\) \(a+ar+ar^2=26\)              (Given)

\(\Rightarrow a(1+r+r^2)=26\)     ______________(1)

Also \(a.ar+ar.ar^2+a.ar^2=156\)     (Given)

\(a^2r(1+r+r^2)=156\)    ______________(2)

Divide equation (2) by (1), we get

\(\frac{a^2r(1+r+r^2)}{a(1+r+r^2)}=\frac{156}{26}\)

\(\Rightarrow ar=6\)                     ______________(3)

Then from (1), we have

\(a+ar+ar.r=26\)

\(\Rightarrow a+6+6r=26\)         \((\because ar=6)\)

\(\Rightarrow a+6r=26-6=20\)

\(\Rightarrow ar+6r^2=20r\)

\(\Rightarrow6+6r^2=20r\)          \((\because ar=6)\)

\(\Rightarrow6r^2-20r+6=0\)

\(\Rightarrow3r^2-10r+3=0\)

\(\Rightarrow3r^2-9r-r+3=0\)

\(\Rightarrow3r(r-3)-1(r-3)=0\)

\(\Rightarrow(r-3)(3r-1)=0\)

\(\Rightarrow r-3=0\;or\;3r-1=0\)

\(\Rightarrow r=3\;or\;r=\frac13\)

From (3), we have

\(a=\frac6r=\frac63=2\) or

\(a=\frac6r=\frac6{\frac13}=18\)

If r = 3 then a = 2

or if \(r=\frac13\) then a = 18

Case I :-

r = 3 & a = 2

\(\therefore ar=2\times3=6\)

\(ar^2=2\times9=18\)

Hence, required number are 2, 6 and 18.

Case II :-

If \(r=\frac13\) & a = 18

\(\therefore ar=\frac{18}3=6\)

\(ar^2=\frac{18}9=2\)

Hence, required numbers in G.P. are 2, 6 & 18 or 18, 6, 2.

Alternate :-

Let \(a,ar,ar^2\) be required three numbers in G.P.

\(\therefore a+ar+ar^2=26\)

\(\Rightarrow a(1+r+r^2)=26\)         _______________(1)

And \(a.ar+ar.ar^2+ar^2.a=156\)

\(\Rightarrow a^2r(1+r+r^2)=156\)    _______________(2)

Divide equation (2) by (1), we get

\(\frac{a^2r(1+r+r^2)}{a(1+r+r^2)}=\frac{156}{26}=6\)

\(\Rightarrow ar=6\)            _______________(3)

Put ar = 6 in equation (1), we get

\(a+6+6r=26\)

\(\Rightarrow a+6r=26-6=20\)

\(\Rightarrow ar+6r^2=20r\)       (Multiply both sides by r)

\(\Rightarrow6+6r^2-20r=0\)

\(\Rightarrow3r^2-10r+3=0\)

\(\Rightarrow3r^2-9r-r+3=0\)

\(\Rightarrow3r(r-3)-1(r-3)=0\)

\(\Rightarrow(r-3)(3r-1)=0\)

\(\Rightarrow r-3=0\;or\;3r-1=0\)

\(\Rightarrow r=3\;or\;r=\frac13\)

Case I :-

r = 3 then \(a=\frac6r\)

\(=\frac63=2\)

\(\therefore ar=2\times3=6\)

\(ar^2=2\times9=18\)

Case II :-

\(r=\frac13\) then \(a=\frac6r=\frac6{\frac13}\)

\(=6\times3=18\)

\(\therefore ar=18\times\frac13=6\)

and \(ar^2=18\times\frac19=2\)

Hence, required numbers are 2, 6, 18.

Correct option is B) 2, 6, 18



Discussion

No Comment Found