InterviewSolution
Saved Bookmarks
| 1. |
If the vectors `xhati+hatj+hatk,hati+yhatj+hatk and hati+hatj+zhatk` are coplanar where, `x ne1,y ne1 and z ne1`, then prove that `(1)/(1-x)+(1)/(1-y)+(1)/(1-z)=1` |
|
Answer» The vectors are coplanar, if we can fiind two scalars `lamda and mu` such that `(xhati+hatj+hatk)=lamda(hati+yhatj+hatk)+mu(hati+hatj+zhatk)` `impliesx=lamda+mu,1=lamda y+mu,1=lamda+muz` `implies x=lamda+mu,y=(1-mu)/(lamda),z=(1-lamda)/(mu)` `implies 1-x=1-lamda-mu,1-y=(lamda-1+mu)/(lamda)` `1-z=(mu-1+lamda)/(mu)` `therefore(1)/(1-x)+(1)/(1-y)+(1)/(1-z)=(1)/(1-lamda-mu)+(lamda)/(lamda+mu-1)+(mu)/(lamda+mu-1)` `=(-1+lamda+mu)/(lamda+mu-1)=1` `implies(1)/(1-x)+(1)/(1-y)+(1)/(1-z)=1`. |
|