

InterviewSolution
Saved Bookmarks
1. |
If `vec(A)= 2hat(i)+4hat(j)-5hat(k)` then the direction of cosins of the vector `vec(A)` areA. `2/(sqrt(45)),4/(sqrt(45)) and (-5)/(sqrt(45))`B. `1/(sqrt(45)),2/(sqrt(45)) and (3)/(sqrt(45))`C. `4/(sqrt(45)),0 and (4)/(sqrt(45))`D. `3/(sqrt(45)),2/(sqrt(45)) and (5)/(sqrt(45))` |
Answer» Correct Answer - A `vec(A)= 2hat(i)+4hat(j)-5hat(k) :. |vec(A)|= sqrt((2)^(2)+(4)^(2)+(-5)^(2))=sqrt(45)` `:. cos alpha = 2/(sqrt(45)), cos beta=(4)/(sqrt(45)), cos gamma=(-5)/(sqrt(45))` |
|