1.

If `vec(A)=3hat(i)+hat(j)+2hat(k)` and `vec(B)=2hat(i)-2hat(j)+4hat(k),` then find the value of `|vec(A)xxvec(B)|.`

Answer» `vec(A)xxvec(B)=|(hat(i), hat(j), hat(k)) ,(3,1,2), (2 ,-2 ,4)|`
`=[1xx4-2xx(-2)]hat(i)+(2xx2-4xx3)hat(j)+[3xx(-2)-1xx2]hat(k)`
`8hat(i)-8hat(j)-8hat(k)`
`:.` Magnitude of `vec(A)xxvec(B)=|vec(A)xxvec(B)|=sqrt((8)^(2)+(-8)^(2)-(-8)^(2))=8 sqrt(3)`


Discussion

No Comment Found

Related InterviewSolutions