Saved Bookmarks
| 1. |
If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B) then the value of |vec(A) + vec(B)|is : |
|
Answer» `(A^(2) + B^(2) + (AB)/sqrt(3))^(1//2)` DIVIDING `tantheta=(vec(A)xxvec(B))/(vec(A).vec(B))` ALSO `|vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B)` `:.tantheta=(sqrt(3)vec(A).vec(B))/(vec(A).vec(B))=sqrt(3)` or `theta=60^@` Let `vec(R )=vec(A)+vec(B)` NOw by ||GM law, we have `|vec(R)|=sqrt(A^(2)+B^(2)+2ABcostheta)` `=sqrt(A^(2)+B^(2)+AB)` `vec(A)+vec(B)=(A^(2)+B^(2)+AB)^(2)` |
|