

InterviewSolution
Saved Bookmarks
1. |
If `|vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B)`, then the value of `|vec(A)+vec(B)|` isA. `(A^(2)+B^(2)+(AB)/(sqrt(3)))^(1//2)`B. `A+B`C. `(A^(2)+B^(2)+sqrt(3)AB)^(1//2)`D. `(A^(2)+B^(2)+AB)^(1//2)` |
Answer» Correct Answer - D `|vec(A)xxvec(B)|=sqrt(3)(vec(A).vec(B))` `AB sin theta= sqrt(3) AB cos theta implies tan theta =sqrt(3):. theta = 60^(@)` Now, `|vec(R )|=|vec(A)|+vec(B)|= sqrt(A^(2)+B^(2)+2AB cos theta)` `=sqrt(A^(2)+B^(2)+2AB(1/2))= (A^(2)+B^(2)+AB)^(1//2)` |
|