1.

If `|vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B)`, then the value of `|vec(A)+vec(B)|` isA. `(A^(2)+B^(2)+(AB)/(sqrt(3)))^(1//2)`B. `A+B`C. `(A^(2)+B^(2)+sqrt(3)AB)^(1//2)`D. `(A^(2)+B^(2)+AB)^(1//2)`

Answer» Correct Answer - D
`|vec(A)xxvec(B)|=sqrt(3)(vec(A).vec(B))`
`AB sin theta= sqrt(3) AB cos theta implies tan theta =sqrt(3):. theta = 60^(@)`
Now, `|vec(R )|=|vec(A)|+vec(B)|= sqrt(A^(2)+B^(2)+2AB cos theta)`
`=sqrt(A^(2)+B^(2)+2AB(1/2))= (A^(2)+B^(2)+AB)^(1//2)`


Discussion

No Comment Found

Related InterviewSolutions