1.

If |vecAxxvecB|=sqrt3(vecA.vecB), then the value of |vecAxxvecB| is :

Answer»

`(A^(2)+B^(2)+AB)^(1//2)`
`(A^(2)+B^(2)+(AB)/(sqrt3))^(1//2)`
`A+B`
`(A^(2)+B^(2)+sqrt3AB)^(1//2)`

Solution :GIVEN `|vecAxx vecB|=sqrt3(vecA. vecB)`
HENCE, `AB sin THETA = sqrt3AB cos theta`
`"or"tan theta = sqrt3`
`theta=60^(@)`
`|vecAxxvecB|=(A^(2)+B^(2)+2ABcos 60^(@))^(1//2)`
`=(A^(2)+B^(2)+2AB cos 60^(@))^(1//2)`
`=(A^(2)+B^(2)+2AB XX(1)/(2))^(1//2)`
`=(A^(2)+B^(2)+AB)^(1//2)`


Discussion

No Comment Found

Related InterviewSolutions