1.

If we can generate a maximum of 4 Boolean functions using n Boolean variables, what will be minimum value of n?1. 655362. 163. 14. 4

Answer» Correct Answer - Option 3 : 1

The correct answer is 1

  • First, we need to understand thatwhen there are novariables,there aretwo expressions :
    • False=0 and True=1
  • For one variable p, four functions can be constructed. Afunction maps each input value of a variable to one andonly one output value.
    • TheFalse(p)function maps each value of p to0(False).
    • The identity(p)function maps each value of p to the identicalvalue.
    • The flip(p)function mapsFalsetoTrueandTruetoFalse.
    • TheTrue(p)function maps each value of p to1(True).
  • For one variable:
    • 4= \(2^{2^1}\),functions can be constructed.This information can be collected into a table:
    • InputFunction
      pFalsep-pTrue
      00011
      10101
  • For n Variables:
    • Number of VariablesNumber of Boolean Functions
      0\(2^{2^0}\)= 20= 2
      1\(2^{2^1}\)= 22= 4
      2\(2^{2^2}\)= 24= 16
      3\(2^{2^3}\)= 28= 256
      4\(2^{2^4}\)= 216= 65536
      n\(2^{2^n}\)
  • Therefore, according to the above table, a maximum of 4 Boolean functions can be generated with 1 variable.


Discussion

No Comment Found