Answer» Correct Answer - Option 3 : 1
The correct answer is 1 - First, we need to understand thatwhen there are novariables,there aretwo expressions :
- For one variable p, four functions can be constructed. Afunction maps each input value of a variable to one andonly one output value.
- TheFalse(p)function maps each value of p to0(False).
- The identity(p)function maps each value of p to the identicalvalue.
- The flip(p)function mapsFalsetoTrueandTruetoFalse.
- TheTrue(p)function maps each value of p to1(True).
- For one variable:
- 4= \(2^{2^1}\),functions can be constructed.This information can be collected into a table:
| Input | Function | | p | False | p | -p | True | | 0 | 0 | 0 | 1 | 1 | | 1 | 0 | 1 | 0 | 1 |
- For n Variables:
| Number of Variables | Number of Boolean Functions | | 0 | \(2^{2^0}\)= 20= 2 | | 1 | \(2^{2^1}\)= 22= 4 | | 2 | \(2^{2^2}\)= 24= 16 | | 3 | \(2^{2^3}\)= 28= 256 | | 4 | \(2^{2^4}\)= 216= 65536 | | n | \(2^{2^n}\) |
- Therefore, according to the above table, a maximum of 4 Boolean functions can be generated with 1 variable.
|