

InterviewSolution
Saved Bookmarks
1. |
If `x_(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x_(2) = sin^(-1) ((1 - x^(2))/(1 + x^(2))), " where " x in (0, 1)`, then `x_(1) + x_(2)` is equal to |
Answer» Correct Answer - C `x_(1) = 2 tan^(-1) ((1 + x)/(1 - x))` and `x_(2) = sin^(-1) ((1 - x^(2))/(1 + x^(2)))` `= tan^(-1) ((1 - x^(2))/(2x))` Now `(1 + x)/(1 -x) gt 1` `rArr x_(1) = pi + tan^(-1) ((2((1 + x)/(1 -x)))/(1 -((1+ x)/(1 -x))^(2)))` `= pi + tan^(-1) ((1 -x^(2))/(-2x))` `= pi - tan^(-1) ((1 -x^(2))/(2x))` `rArr x_(1) + x_(2) = pi` |
|