InterviewSolution
Saved Bookmarks
| 1. |
If `x_(1)` and `x_(2)` are two distind roots of the equation `a cos x+b sinx=c`, then `tan"" (x_(1)+x_(2))/(2)` is equal toA. `(a)/(b)`B. `(b)/(a)`C. `(c)/(a)`D. `(a)/(c)` |
|
Answer» Correct Answer - B `a cos x+b sin x=c` `rArr (a(1-tan^(2)(x)/(x)))/(1+tan^(2)(x)/(2))+(2btan((x)/(2)))/(1+tan^(2)((x)/(2)))=c` `rArr(c+a)tan^(2)((x)/(2))-2btan((x)/(2))+c-a=0` `rARr tan((x_(1))/(2))+tan ((x^(2))/(2))=(2b)/(c+a)` and `tan((x_(1))/(2))tan((x_(2))/(2))=(c-a)/(c+a)` `rArr tan((x_(1)+x_(2))/(2))=((2b)/(c+a))/(1-(c-a)/(c+a))=(2b)/(2a)=(b)/(a)` |
|