1.

If x=1+sin a/cos a then sin a equala.1-x^2/1+x^2b.x^2-1/x^2+1C.1+X/1-xD.1-x/1+x

Answer»

\large\underline{\sf{Solution-}}

GIVEN that

\rm :\longmapsto\:x = \dfrac{1 + sina}{cosa}

On squaring both sides, we get

\rm :\longmapsto\: {x}^{2} = \dfrac{ {(1 + sina)}^{2} }{ {cos}^{2} a}

can be rewritten as

\rm :\longmapsto\:\dfrac{ {x}^{2} }{1}  = \dfrac{ {(1 + sina)}^{2} }{ {cos}^{2} a}

On applying COMPONENDO and Dividendo, we get

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  = \dfrac{ {(1 + sina)}^{2} +  {cos}^{2} a }{ {(1 + sina)}^{2}   - {cos}^{2} a}

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  = \dfrac{1 +  {sin}^{2}a + 2sina +  {cos}^{2} a }{ 1 + {sin}^{2}a + 2sina   - {cos}^{2} a}

can be re-arranged as

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  = \dfrac{1 +  ({sin}^{2}a + {cos}^{2}a)   + 2sina }{ (1 -  {cos}^{2}a)  + {sin}^{2}a + 2sina}

We know,

\boxed{ \rm{  {sin}^{2}x +  {cos}^{2}x = 1}}

So, USING this

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  = \dfrac{1 +  1+ 2sina }{  {sin}^{2}a  + {sin}^{2}a + 2sina}

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  = \dfrac{2+ 2sina }{2{sin}^{2}a + 2sina}

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  = \dfrac{2(1+ sina)}{2{sina}(sina + 1)}

\rm :\longmapsto\:\dfrac{ {x}^{2}  + 1}{ {x}^{2}  - 1}  = \dfrac{1}{sina}

\bf\implies \:sina = \dfrac{ {x}^{2}  - 1}{ {x}^{2}  + 1}

Hence, Option (B) is correct

Additional INFORMATION :-

\red{\rm :\longmapsto\:If \: \dfrac{a}{b}  = \dfrac{c}{d} , \: then}

\boxed{ \rm{  \frac{a}{c} =  \frac{b}{d} \: is \: called \: alternendo}}

\boxed{ \rm{  \frac{b}{a} =  \frac{d}{c} \: is \: called \: invertendo}}

\boxed{ \rm{  \frac{a + b}{b} =  \frac{c + d}{d} \: is \: called \: componendo}}

\boxed{ \rm{  \frac{a  -  b}{b} =  \frac{c  -  d}{d} \: is \: called \: dividendo}}

\boxed{ \rm{  \frac{a + b}{a - b} =  \frac{c + d}{c - d} \: is \: called \: componendo \: and \: dividendo}}



Discussion

No Comment Found

Related InterviewSolutions