

InterviewSolution
Saved Bookmarks
1. |
If `x_1, x_2, x_3, x_n` are the roots of `x^n+ax+b=0` then the value of `(x_1-x_2)(x_1 -x_3) (x_1-x_4)...... (x_1-x_n)` is equal to |
Answer» `P(x)=(x-x_1)(x-x_2)(x-x_3)...(x-x_n)=x^n+ax+b` `lim_(x->x_1)(x-x_2)(x-x_3)...(x-x_n)=lim_(x->x_1)((x^n+ax+b)/(x-x_1))` `(x-x_2)(x-x_3)...(x_1-x_n)=lim_(x->x_1)(x^n+ax+b)/(x-x_1)` `lim_(x->x_1)(nx^(n-1)+a)/1` `nx_1^(n-1)+a` option B is correct. |
|