

InterviewSolution
Saved Bookmarks
1. |
If x + (1/x) = √3, then find the value of x18 + 1/x18.1). -22). √33). 24). 0 |
Answer» ⇒ x + 1/x = √3 Squaring both sides we GET, ⇒ x2 + (1/x2) + 2 = 3 ⇒ x2 + (1/x2) = 1 Now, CUBING both sides we get, ⇒ x6 + (1/x6) + 3 × x2 × (1/x2){x2 + (1/x2)} = 1 ⇒ x6 + (1/x6) + 3(1) = 1 ⇒ x6 + (1/x6) = -2 Now, cubing both sides we get, ⇒ x18 + (1/x18) + 3 × x6 × (1/x6){x6 + (1/x6)} = -8 ⇒ x18 + (1/x18) + 3(-2) = -8 ⇒ x18 + (1/x18) = -2 |
|