Saved Bookmarks
| 1. |
If x + 1/x=6, find the value of x^4+ 1/x^4 |
Answer» EXPLANATION.As we know that, Squaring on both SIDES of the equation, we get. ⇒ (x + 1/x)² = (6)². ⇒ x² + 1/x² + 2(x)(1/x) = 36. ⇒ x² + 1/x² + 2 = 36. ⇒ x² + 1/x² = 36 - 2. ⇒ x² + 1/x² = 34. Again squaring on both sides of the equation, we get. ⇒ (x² + 1/x²)² = (34)². ⇒ x⁴ + 1/x⁴ + 2(x²)(1/x²) = 1156 ⇒ x⁴ + 1/x⁴ + 2 = 1156. ⇒ x⁴ + 1/x⁴ = 1156 - 2. ⇒ x⁴ + 1/x⁴ = 1154. |
|