1.

If x + 1/x=6, find the value of x^4+ 1/x^4

Answer»

EXPLANATION.

X + 1/x = 6.

As we know that,

Squaring on both SIDES of the equation, we get.

⇒ (x + 1/x)² = (6)².

⇒ x² + 1/x² + 2(x)(1/x) = 36.

⇒ x² + 1/x² + 2 = 36.

⇒ x² + 1/x² = 36 - 2.

⇒ x² + 1/x² = 34.

Again squaring on both sides of the equation, we get.

⇒ (x² + 1/x²)² = (34)².

⇒ x⁴ + 1/x⁴ + 2(x²)(1/x²) = 1156

⇒ x⁴ + 1/x⁴ + 2 = 1156.

⇒ x⁴ + 1/x⁴ = 1156 - 2.

⇒ x⁴ + 1/x⁴ = 1154.



Discussion

No Comment Found

Related InterviewSolutions