InterviewSolution
Saved Bookmarks
| 1. |
If `x^2+x+1=0` then the value of `(x+1/x)^2+(x^2+1/(x^2))^2+...+(x^27+1/(x^27))^2` is |
|
Answer» `1 + omega + omega^2 = 0` `1 + x + x^2 = 0 ` `omega^3 = 1 , 1 + omega + omega^2 = 0` `(x + 1/x)^2 + ( x^2 + 1/x^2)^2 + ....... (x^27 + 1/x^27)^2` when `x= omega` `( omega + omega^2/omega^3)^2 + ( omega^2 + omega/omega^3) + (1+1)^2 + ( omega + omega^2/omega^6)^2 + (omega^2 + omega/omega^6)^2 + (1+1)^2` = `(-1)^2 + (-1)^2 + (2)^2 + (-1)^2 + (-1)^2 + (2)^2 ` `= 9[(-1)^2 + (-1)^2 + 2^2]` `= 9 xx 6 = 54` Answer |
|