1.

If `x^2 + y^2=6xy` prove that `2log(x+y) = logx+ logy + 3log2`

Answer» `x^2+y^2 = 6xy`
`=>(x+y)^2-2xy = 6xy`
`=>(x+y)^2 = 8xy`
Taking log both sides,
`log(x+y)^2 = log(8xy)`
`=>2log(x+y) = log8+logx+logy`
`=>2log(x+y) = log2^3+logx+logy`
`=>2log(x+y) = 3log2+logx+logy`


Discussion

No Comment Found