1.

If x = (√2a + 1 + √2a - 1)/(√2a + 1 - √2a - 1)prove that x² - 4ax + 1 = 0

Answer»

\large\underline{\sf{Given- }}

\rm :\longmapsto\:{x=\dfrac{\sqrt{2a+1}+\sqrt{2a-1} }{\sqrt{2a+1}-\sqrt{2a-1} } }

\large\underline{\sf{To\:prove- }}

\rm :\longmapsto\: {x}^{2} - 4ax + 1 = 0

Concept USED :-

Componendo and Dividendo

\rm :\longmapsto\:If \: \dfrac{a}{b}  = \dfrac{c}{d}, \: then \: componendo \: and \: dividendo \: means

\boxed{ \bf{  \frac{a + b}{a - b} =  \frac{c + d}{c - d}}}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:{x=\dfrac{\sqrt{2a+1}+\sqrt{2a-1} }{\sqrt{2a+1}-\sqrt{2a-1} } }

can be rewritten as

\rm :\longmapsto\:{\dfrac{x}{1} =\dfrac{\sqrt{2a+1}+\sqrt{2a-1} }{\sqrt{2a+1}-\sqrt{2a-1} } }

On Applying Componendo and Dividendo, we GET

\rm :\longmapsto\:{\dfrac{x + 1}{x - 1} =\dfrac{(\sqrt{2a+1}+\sqrt{2a-1} ) + (\sqrt{2a+1} - \sqrt{2a-1})}{(\sqrt{2a+1}+\sqrt{2a-1}) - (\sqrt{2a+1}-\sqrt{2a-1}) } }

\rm :\longmapsto\:{\dfrac{x + 1}{x - 1} =\dfrac{\sqrt{2a+1}+\sqrt{2a-1} + \sqrt{2a+1} - \sqrt{2a-1}}{\sqrt{2a+1}+\sqrt{2a-1} - \sqrt{2a+1} + \sqrt{2a-1} } }

\rm :\longmapsto\:{\dfrac{x + 1}{x - 1} =\dfrac{2\sqrt{2a+1}}{2\sqrt{2a - 1}}}

can be rewritten as

\rm :\longmapsto\:{\dfrac{x + 1}{x - 1} =\dfrac{\sqrt{2a+1}}{\sqrt{2a - 1}}}

On squaring both sides, we get

\rm :\longmapsto\:{\dfrac{(x + 1) {}^{2} }{(x - 1) {}^{2} } =\dfrac{{2a+1}}{{2a - 1}}}

On Applying Componendo and Dividendo, we get

\rm :\longmapsto\:{\dfrac{(x + 1) {}^{2} +  {(x  - 1)}^{2}  }{(x  + 1) {}^{2}  -  {(x - 1)}^{2} } =\dfrac{{2a+1 + 2a - 1}}{{2a + 1 - 2a  + 1}}}

We know that,

\boxed{ \rm{  {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}}

and

\boxed{ \rm{  {(x + y)}^{2} -  {(x - y)}^{2}  = 4xy}}

So, using these Identities, we get

\rm :\longmapsto\:\dfrac{2( {x}^{2} + 1) }{4x}  = \dfrac{4a}{2}

\rm :\longmapsto\:\dfrac{( {x}^{2} + 1) }{2x}  = \dfrac{2a}{1}

\rm :\longmapsto\: {x}^{2} + 1 = 4ax

\bf\implies \: {x}^{2} - 4ax + 1 = 0

HENCE, Proved

ADDITIONAL Information :-

\rm :\longmapsto\:If \: \dfrac{a}{b}  = \dfrac{c}{d}, \: then \:

\boxed{ \rm{  \frac{a}{c} =  \frac{b}{d}  \: is \: called \: alternendo}}

\boxed{ \rm{  \frac{b}{a} =  \frac{d}{c}  \: is \: called \: invertendo}}

\boxed{ \rm{  \frac{a + b}{b} =  \frac{c + d}{d}  \: is \: called \: componedo}}

\boxed{ \rm{  \frac{a  -  b}{b} =  \frac{c  -  d}{d}  \: is \: called \: dividendo}}



Discussion

No Comment Found

Related InterviewSolutions