| 1. |
If x =√5−√2√5+√2and y =√5+√2√5−√2then find the value of x+y. |
|
Answer» Answer: Step-by-step EXPLANATION: Given, x = ( √5 – 2 ) / ( √5 + 2 ) and y = ( √5 + 2 ) / ( √5 – 2 ) x = ( √5 – 2 ) / ( √5 + 2 ) = ( √5 – 2 ) / ( √5 + 2 ) × ( √5 – 2 ) / ( √5 – 2 ) = ( √5 – 2 )² / [ (√5)² – (2)² ] = ( 9– 4√5 ) / ( 5 – 4 ) = 9 – 4 √5 y = ( √5 + 2 ) / ( √5 – 2 ) = ( √5 + 2 ) / ( √5 – 2 ) × ( √5 + 2 ) / ( √5 + 2 ) = ( √5 + 2 )² / [ (√5)² – (2)² ] = ( 9 + 4√5 ) / ( 5 – 4 ) = 9 + 4√5 Now, x² + xy + y² = ( 9 – 4√5 )² + ( 9 – 4√5)( 9 + 4√5 ) + ( 9 + 4√5 )² = ( 81 – 72√5 + 80 ) + [ 9( 9 + 4√5 ) –4√5( 9 + 4√5 ) ] + ( 81 + 72√5 + 80 ) = ( 161 – 72√5 ) + ( 81 + 13√5 – 13√5 – 80 ) + ( 161 + 72√5 ) = 161 – 72√5 + 1 + 161 + 72√5 = 161 + 1 + 161 = 323 |
|