InterviewSolution
Saved Bookmarks
| 1. |
If ` x : a = y : b = z : c `, then prove that `(a^(2) + b^(2) + c^(2))(x^(2) + y^(2) + z^(2)) = (ax + by + cz)^(2)` |
|
Answer» Given that ` x : a = y : b = z : c` or, ` x/a = y/b = z/c = k (k ne 0) `(let) ` :. X = ak, y = bk , z = ck`. LHS `(a^(2)+b^(2)+c^(2))(x^(2)+y^(2)+z^(2))` ` = (a^(2) + b^(2) + c^(2)){(ak)^(2)+(bk)^(2)+(ck)^(2)}` ` = (a^(2) + b^(2) + c^(2))(a^(2)k^(2)+b^(2)k^(2)+c^(2)k^(2))` ` = (a^(2) + b^(2) + c^(2))* k^(2) (a^(2)+b^(2)+c^(2)) = k^(2) (a^(2)+b^(2)+c^(2))^(2)` RHS ` = (ax + by + cz)^(2) = (a.ak+b.bk + c.ck)^(2)` ` = (a^(2)k + b^(2)k + c^(2)k)^(2) = {k(a^(2) + b^(2) +c^(2))}^(2)` ` = k^(2) (a^(2)+b^(2)+c^(2)) ` ` :. ` LHS = RHS |
|