1.

If x/a = y/b = z/c , then prove that x3/a3 + y3/b3 + z3/c3 = 3xyz/abc .​

Answer»

Step-by-step explanation:

.

let x/a =y/b =z/c =k

then (x/a)^3=k^3 =d

(y/b)^3=k^3 =E

(z/c)^3=k^3 =f

then d +e+f = 3k^3

3(x/a)(y/b)(z/c)=(k^3)×3=3k^3=d+e+f

(x/a)^3+(y/b)^3+(z/c)^3 = 3xyz/abc

HENCE PROVED

hence proved



Discussion

No Comment Found

Related InterviewSolutions