1.

If {x} denotes the fractional part of x, then `underset(x to 0)(lim) ({x})/(tan {x})` is equal toA. 1B. 0C. -1D. none of these

Answer» Correct Answer - D
We have
` lim_(xto0^-)({x})/(tan{x})`
` =lim_(xto0^-)(x-[x])/(tan (x-[x]))=lim_(xto0^-)(x+1)/(tan(x+1))=(1)/(tanx+1)=(1)/(tan1)=cot 1`
and
` lim_(xto0^-)({x})/(tan{x})=lim_(xto0^+)(x-[x])/(tan(x-[x]))=lim_(xto0^+)(x)/(tanx)=1`
Clearly , `lim_(xto0^-)({x})/(tan{x}) ne lim_(xt0^+)({x})/(tan{x})`
So , `lim_(xto0) ({x})/(tan{x})` does not exist.


Discussion

No Comment Found