1.

If [x] denotes the greatest integer less than or equal to x, then evaluate `lim_(ntooo) (1)/(n^(3))([1^(1)x]+[2^(2)x]+[3^(2)x]+...+[n^(2)x]).`

Answer» We have, `underset(ntooo)lim(sum_(r=1)^(n)[r^(2)x])/(n^(3))=underset(ntooo)lim(underset(r=1)overset(n)sumr^(2)x-{r^(2)x})/(n^(3))`
Where `{.}` denotes the fractional part function
`=underset(ntooo)lim((x.(n(n+1)(2n+1))/(6))/n^(3)-underset(r=1)overset(n)sum{{r^(2)x}}/(n^(3)))`
`=x/6underset(ntooo)lim(1+(1)/(n))(2+(1)/(n))-underset(ntooo)limunderset(r=1)overset(n)sum{{r^(2)x}}/(n^(3))`
`=x/6-0" "( :. 0le{r^(2)x}lt1)`
`=x/6`


Discussion

No Comment Found