1.

If x = \((\frac{4}{5})^{-2}\div (\frac{1}{4})^{2}\), find the value of \(x^{-1}\)

Answer»

x = \((\frac{4}{5})^{-2}\div (\frac{1}{4})^{2}\)

On using, [Using \(a^{-n}=\frac{1}{a^{n}}\)]

we get,

 x = \((\frac{5}{4})^{2}\div (\frac{1}{4})^{2}\)

[Using and \(\frac{1}{a}\div \frac{1}{b}\)=\(\frac{1}{a}\times \frac{b}{1}\)

x = \((\frac{5}{4})^{2}\times (\frac{4}{1})^{2}\)

x = \(\frac{5}{4}\times \frac{5}{4}\times 4\times 4\)

x = 25

\(x^{-1} = \frac{1}{25}\)



Discussion

No Comment Found