

InterviewSolution
Saved Bookmarks
1. |
If `x`is so small that `x^3`and higher powers of `x`may be neglectd, then `((1+x)^(3//2)-(1+1/2x)^3)/((1-x)^(1//2))`may be approximated as`3x+3/8x^2`b. `1-3/8x^2`c. `x/2-3/xx^2`d. `-3/8x^2`A. `3x+3/(x^(2))`B. `1-3/8 x^(2)`C. `x/2-3/x x^(2)`D. `-3/8 x^(2)` |
Answer» Correct Answer - D `((1-x)^(3//2)(1+(1)/(2)x)^(3))/((1-x)^(1//2))=((1+3/2x+3/8x^(2))-(1+3/2x+3(x^(2))/(4)))/((1-x)^(1//2))` `= (-3)/(8)x^(2)(1-x)^(-1//2)` `= - 3/8 x^(2)(1+x/2) = - 3/8 x^(2)` |
|