InterviewSolution
Saved Bookmarks
| 1. |
If `x ne (npi)/2, n in I` and `(cosx)^(sin^(2)x-3sinx+2)=1`, then find the general solutions of x. |
|
Answer» As `x ne (npi)/2 rArr cosx ne 0,1,-1` So, `(cosx)^(sin^(2)x-3sinx+2) = 1 rArr sin^(2)x-3sinx+2=0` `therefore (sinx-2)(sinx-1)=0 rArr sinx=1,2` Where `sinx=2` is not possible and `sinx=2` is not possible and `sinx=1` which is also not possible as `x ne (npi)/(2)` `therefore` no general solutions is possible. Ans. |
|