1.

If x2 + y2 = 25xy, then prove that 2 log (x + y) = 3log3 + logx + logy.

Answer»

Given: x2 + y2 = 25xy 

We know that (x + y)2 = x2 + y2 + 2xy 

= 25xy + 2xy    [∵ x2 + y2 = 25xy given] 

(x + y)2 = 27xy 

Taking ‘log’ on both sides 

log (x + y)2 = log 27xy

2 log (x + y) = log 27 + log x + log y 

= log 33 + log x + log y 

⇒ 2 log (x + y) = 3log3 + log x + log y



Discussion

No Comment Found