

InterviewSolution
Saved Bookmarks
1. |
If `y+d/(dx)(xy)=x(sinx+logx)`, find `y(x)`. |
Answer» The given differential equation is `y+d/(dx)(xy) = x(sinx+logx)` i.e., `x(dy)/(dx)+2/xy=sinx+logx`.............(1) This is a linear different equation I.F.`=e^(2int1/xdx)= e^(2logx)=x^(2)`............(2) Thus, solution is given by `yx^(2)=intx^(2)(sinx+logx)dx+c` `=-x^(2)cosx+2xsinx+2cosx+x^(3)/(3)logx-x^(3)/9+c` or `y=-cosx+2/xsinx+2/x^(2)cosx+x/3logx-x/3+c/x^(2)` |
|