InterviewSolution
Saved Bookmarks
| 1. |
If y = f(x) = \(\frac{ax-b}{bx-a}\), show that x = f(y). |
|
Answer» Given, y = f(x) = (ax-b)/(bx-a) ⇒ f(y) = \(\frac{ay-b}{by-a}\) We need to prove that x = f(y). We have, y = \(\frac{ax-b}{bx-a}\) ⇒ y(bx – a) = ax – b ⇒ bxy – ay = ax – b ⇒ bxy – ax = ay – b ⇒ x(by – a) = ay – b ⇒ x = \(\frac{ay-b}{by-a}\) = f(y) ∴ x = f(y) Thus, x = f(y). |
|