1.

If Y = tan35°, then the value of (2tan55° + cot55°) is :1. \(\rm \frac{2}{Y^2}\)2. \(\frac{2 - Y^2}{Y}\)3. \(\frac{2 - Y}{Y^2}\)4. \(\frac{2 + Y^2}{Y}\)

Answer» Correct Answer - Option 4 : \(\frac{2 + Y^2}{Y}\)

Given:

Y = tan35°

Formula:

tan (90 - a) = cot a

Calculation:

⇒ cot 55° = cot(90 - 35) = tan 35°

⇒ tan 55° = tan(90 - 35) = cot 35 = 1/tan 35 = 1/Y

Then,

⇒ (2 tan55° + cot55°) = 2/Y + Y = (2 + Y2)/Y

∴ (2tan55° + cot55°) = (2 + Y2)/Y



Discussion

No Comment Found

Related InterviewSolutions