1.

If y=x^x then find dy/dx​

Answer»

y =  {x}^{x}  \\  \\ taking \: logarithm \: both \: sides \\  \\ logy = xlogx \\  \\ diff. \:  \: both \: sides \: w.r.t \:  \:  \: x \\  \\  \frac{1}{y}  \frac{dy}{dx}  = x \frac{1}{x}  + logx \\  \\  \frac{dy}{dx}  = y(1 + logx) \\  \\  \frac{dy}{dx}  =  {x}^{x} (1 + logx)



Discussion

No Comment Found

Related InterviewSolutions