 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | If `(y-z)prop1/x, (z-x)prop and (x-y)prop1/z,` then find the sum of three variation constants . | 
| Answer» `(y-z) prop1/x rArry-z =k_(1). 1/x(where k_(1)ne0="variation constant".)` `rArr k_(1) =x(y-z)…..(1) ` `(z-x) prop1/y , therefore(z-x)=k_(2). 1/y(where k_(2)ne0="variation constant" )` `therefore k_(2) =y (z-x) …….(2) ` Also , `(x-y) prop1/z , therefore x-y =k_(3) x 1/z(" where " k_(3) ne0= "variation constant")` `therefore k_(3) =z(x-y)......(3)` Now , adding (1) +(2) +(3) we get , `k_(1)+k_(2)+k_(3) =x(y-z)+y(z-x)+z(x-y)` `=xy-xz+yz-xy+zx-yz=0` `therefore k_(1) +k_(2)+ k_(3) =0.` Hence the sum of three variation constant =0. | |