1.

x ∝ (1/√y) and when x = 40 then y = 16. If x = 10, find y.

Answer»

x ∝ (1/√y)

∴ x = k x (1/√y)

where, k is the constant of variation. 

∴ x × √y = k …(i) 

When x = 40, y = 16 

∴ Substituting x = 40 andy = 16 in (i), we get 

x × √y = k 

∴ 40 × √16 = k 

∴ k = 40 × 4 

∴ k = 160 

Substituting k = 160 in (i), we get 

x × √y = k 

∴ x × √y = 160 …(ii)

This is the equation of variation. 

When x = 10,y = ?

∴ Substituting, x = 10 in (ii), we get 

x × √y = 160 

∴ 10 × √y = 160 

∴ √y = 160/10

∴ √y = 16 

∴ y = 256 … [Squaring both sides]



Discussion

No Comment Found