InterviewSolution
Saved Bookmarks
| 1. |
If `|z^2=1|=|z|^2+1`, then show that `z`lies on the imaginary axis. |
|
Answer» Let z = (x + iy). Then, `z^(2) = (x^(2)-y^(2)) and |z|^(2) = (x^(2) + y^(2))`. Now, `|z^(2)-1|= |z|^(2) + 1` `rArr" "|(x^(2)-y^(2)-1)+i(2xy)|=(x^(2)+y^(2)+1)` `rArr" "|(x^(2)-y^(2)-1)+i(2xy)|^(2)=(x^(2)+y^(2)+1)^(2)` `rArr" "(x^(2)-y^(2)-1)^(2)+4x^(2)y^(2)=(x^(2)+y^(2)+1)^(2)` `rArr" "[x^(2)+(y^(2)+1)]^(2)-[x^(2)-(y^(2)+1)]^(2)=4x^(2)y^(2)` `rArr" "4x^(2)(y^(2)+1)=4x^(2)y^(2) rArr 4x^(2){(y^(2)+1)-y^(2)}=0` `rArr" "4x^(2)= 0 rArr x = 0` Hence, z = 0 + iy, which shows that z is imaginary. |
|