InterviewSolution
Saved Bookmarks
| 1. |
If `|z-5i|=|z+5i`, then the locus of `zdot` |
|
Answer» Let `z = x+iy` Then, `|x+iy-5i| = |x+iy+5i|` `=>|x+(y-5)i| = |x+(y+5)i|` `=>x^2+(y-5)^2 = x^2+(y+5)^2` `=> -10y = 10y` `=> -20y = 0` `=> y = 0` So, imaginary part of `z` is `0`. We can write it as, `(z-barz)/2 = 0` `z - barz = 0`, which is the required locus. |
|