Saved Bookmarks
| 1. |
If z is a complex number such that amp("z-2"/"2z+3i")=0 and z_0=3+4i, then the value of z_0z +barz_0 barz(whenever defined) |
|
Answer» is 6 `(z-2)/(2z+3i)=k` (k gt 0) z-2=2zk+3ik `z=(3ik+2)/(1-2k)` `z_0z+barz_0barz=2Re(z_0z)` `=2Re((3+4i).((3ik+2)/(1-2k)))` `2("6-12k"/"1-2k")` `=2.6"(1-2k)"/"(1-2k)"` =12 |
|