InterviewSolution
Saved Bookmarks
| 1. |
If `z=x+i ya n dw=(1-i z)/(z-i)`, show that `|w|=1 z`is purely real. |
|
Answer» We have `|w| = 1` `rArr |(1-iz)/(z-i)| = 1 or (|1-iz|)/(|z-i|)=1` `or | 1 - iz | = |z-i|` or `|1-i(x+iy)|=|x+iy -i|,` where z = x + iy `or |1+y-ix|=|x +i(y-1)|` `or sqrt((1+y)^(2) +(-x)^(2))=sqrt(x^(2) + (y-1)^(2))` `or (1+y)^(2) + x^(2) =x^(2) +(y-1)^(2)` ` or y = 0` `rArr z = x +i0 = x`, which is purely real |
|