InterviewSolution
Saved Bookmarks
| 1. |
If `z + z^(-1)= 1`, then find the value of `z^(100) + z^(-100)`. |
|
Answer» Correct Answer - `-1` `z +z ^(-1)=1` ` or z^(2) -z + 1=0` `rArr z =- omega or -omega^(2)` For `z = -omega` `z^(100) + z^(-100) = (-omega)^(100) + (-omega)^(100)` `= omega+(1)/(omega) = omega + omega^(2)=1` For `z = -omega^(2)`, `z^(100) + z^(-100)=- (-omega^(2))^(100) _ (-omega^(2))^(-100)` ` = omega^(200) + (1)/(omega^(200))` `= omega^(2)+(1)/(omega^(2)) = omega^(2) + omega = -1` |
|