1.

If `za n dw`are two complex number such that `|z w|=1a n da rg(z)-a rg(w)=pi/2`, then show that ` z w=-idot`

Answer» Let `z = r_(1) (cos theta_(1) + isin theta_(1)) "and" w = r_(2) (costheta_(2) + isin theta _(2)) `
Also, `|zw| = |z||w| = r_(1) r_(2) = 1 `
`:. r_(1) r_(2) = 1 `
Futher, `arg (z) = theta _(1) and arg (w) = theta_(2)`
But ` arg (z) - arg (w) = (pi)/(2)`
`rarr theta_(1) - theta_(2) = (pi)/(2)`
`rarr arg((z)/(w)) = (pi)/(2)`
Now. to prove `barzw = - i`
LHS = `barzw`
` = r_(1) (costheta _(1) - isintheta _(1)) r_(2) (costheta_(2) + isin theta_(2))`
` = r_(1)r_(2) [cos(theta _(1) - theta_(2))+isin (theta_(2)-theta_(1) ) ]`
` = r_(1)r_(2) [cos(-pi//2)+isin (-pi//2 ) ]`
`1 [0 - i]`
`-i = RHS " "Hence proved.`


Discussion

No Comment Found