1.

Ifandare zeroes of then find ​

Answer»

★ {\pmb{\underline{\sf{Required \ Solution ... }}}} \\

As We KNOW that \alpha and \beta are zeroes of {\tt{ 5x^2 + 5x + 1 }}.

»FIRSTLY, We've to Find the SUM of the Zeroes of the QUADRATIC Polynomial as:

\colon\implies{\tt{ \alpha + \beta = \dfrac{-b}{a} }} \\ \\ \colon\implies{\tt{ \cancel{ \dfrac{-5}{5} } = -1 }}

»Now, We should find the Product of the Zeroes of the Quadratic Polynomial as:

\colon\implies{\tt{ \alpha  \beta = \dfrac{c}{a} }} \\ \\ \colon\implies{\tt{ \dfrac{1}{5}  }}

Now Finally, It's TIME to get the value of the Desired Equation as well.

\colon\implies{\tt{ \dfrac{1}{ \alpha } + \dfrac{1}{ \beta } }} \\ \\ \colon\implies{\tt{ \dfrac{ \alpha + \beta}{ \alpha \beta } }} \\ \\ \colon\implies{\tt{ \dfrac{-1}{ \dfrac{1}{5} } }} \\ \\ \colon\implies{\tt{ \dfrac{-5}{1} = -5 }} \\

Hence,

The value of \alpha { }^{ - 1} + \beta {}^{ - 1} is {\tt{ -5}}.



Discussion

No Comment Found

Related InterviewSolutions