1.

In a factory the production of scooters rose to 46305 from 40000 in 3 years. Find the annual rate of growth of the production of scooters.

Answer»

Given, 

Initial production of scooters = 40000 

Final production of scooters = 46305 

Time duration = 3 years 

Let annual growth rate = R% 

So

\(= 40000({1}+\frac{R}{100})({1}+\frac{R}{100})({1}+\frac{R}{100})\) = 46305

\(=({1}+\frac{R}{100})^3\) \(=\frac{46305}{40000}\)  \(=\frac{9261}{8000}\) = \((\frac{21}{20})^3\)

\(=1+\frac{R}{100}\) \(=\frac{21}{20}\)

\(=\frac{R}{100}\) \(=\frac{21}{20}-1\) \(=\frac{1}{20}\)

\(=R = \frac{1}{20}\times100\) = 5%

Hence, 

Annual growth rate of production of scooters = 5 %



Discussion

No Comment Found

Related InterviewSolutions