1.

In a simultaneous throw of a pair of dice, find the probability of getting:(i) 8 as the sum(ii) a doublet(iii) a doublet of prime numbers(iv) an even number on first(v) a sum greater than 9(vi) an even number on first(vii) an even number on one and a multiple of 3 on the other(viii) neither 9 nor 11 as the sum of the numbers on the faces(ix) a sum less than 6(x) a sum less than 7(xi) a sum more than 7(xii) neither a doublet nor a total of 10(xiii) odd number on the first and 6 on the second(xiv) a number greater than 4 on each die(xv) a total of 9 or 11(xvi) a total greater than 8

Answer»

Given: a pair of dice has been thrown, so the number of elementary events in sample space is 6= 36

n (S) = 36

By using the formula,

P (E) = favourable outcomes / total possible outcomes

(i) Let E be the event that the sum 8 appears

E = {(2, 6) (3, 5) (4, 4) (5, 3) (6, 2)}

n (E) = 5

P (E) = n (E) / n (S)

= 5 / 36

(ii) Let E be the event of getting a doublet

E = {(1, 1) (2, 2) (3, 3) (4, 4) (5, 5) (6, 6)}

n (E) = 6

P (E) = n (E) / n (S)

= 6 / 36

= 1/6

(iii) Let E be the event of getting a doublet of prime numbers

E = {((2, 2) (3, 3) (5, 5)}

n (E) = 3

P (E) = n (E) / n (S)

= 3 / 36

= 1/12

(iv) Let E be the event of getting a doublet of odd numbers

E = {(1, 1) (3, 3) (5, 5)}

n (E) = 3

P (E) = n (E) / n (S)

= 3 / 36

= 1/12

(v) Let E be the event of getting sum greater than 9

E = {(4,6) (5,5) (5,6) (6,4) (6,5) (6,6)}

n (E) = 6

P (E) = n (E) / n (S)

= 6 / 36

= 1/6

(vi) Let E be the event of getting even on first die

E = {(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)}

n (E) = 18

P (E) = n (E) / n (S)

= 18 / 36

= 1/2

(vii) Let E be the event of getting even on one and multiple of three on other

E = {(2,3) (2,6) (4,3) (4,6) (6,3) (6,6) (3,2) (3,4) (3,6) (6,2) (6,4)}

n (E) = 11

P (E) = n (E) / n (S)

= 11 / 36

(viii) Let E be the event of getting neither 9 or 11 as the sum

E = {(3,6) (4,5) (5,4) (5,6) (6,3) (6,5)}

n (E) = 6

P (E) = n (E) / n (S)

= 6 / 36

= 1/6

(ix) Let E be the event of getting sum less than 6

E = {(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (3,1) (3,2) (4,1)}

n (E) = 10

P (E) = n (E) / n (S)

= 10 / 36

= 5/18

(x) Let E be the event of getting sum less than 7

E = {(1,1) (1,2) (1,3) (1,4) (1,5) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (4,1) (4,2) (5,1)}

n (E) = 15

P (E) = n (E) / n (S)

= 15 / 36

= 5/12

(xi) Let E be the event of getting more than 7

E = {(2,6) (3,5) (3,6) (4,4) (4,5) (4,6) (5,3) (5,4) (5,5) (5,6) (6,2) (6,3) (6,4) (6,5) (6,6)}

n (E) = 15

P (E) = n (E) / n (S)

= 15 / 36

= 5/12

(xii) Let E be the event of getting neither a doublet nor a total of 10

E′ be the event that either a double or a sum of ten appears

E′ = {(1,1) (2,2) (3,3) (4,6) (5,5) (6,4) (6,6) (4,4)}

n (E′) = 8

P (E′) = n (E′) / n (S)

= 8 / 36

= 2/9

So, P (E) = 1 – P (E′)

= 1 – 2/9

= 7/9

(xiii) Let E be the event of getting odd number on first and 6 on second

E = {(1,6) (5,6) (3,6)}

n (E) = 3

P (E) = n (E) / n (S)

= 3 / 36

= 1/12

(xiv) Let E be the event of getting greater than 4 on each die

E = {(5,5) (5,6) (6,5) (6,6)}

n (E) = 4

P (E) = n (E) / n (S)

= 4 / 36

= 1/9

(xv) Let E be the event of getting total of 9 or 11

E = {(3,6) (4,5) (5,4) (5,6) (6,3) (6,5)}

n (E) = 6

P (E) = n (E) / n (S)

= 6 / 36

= 1/6

(xvi) Let E be the event of getting total greater than 8

E = {(3,6) (4,5) (4,6) (5,4) (5,5) (5,6) (6,3) (6,4) (6,5) (6,6)}

n (E) = 10

P (E) = n (E) / n (S)

= 10 / 36

= 5/18



Discussion

No Comment Found

Related InterviewSolutions