1.

In a standard YDSE setup if the screen is kept tilted as shown, find the distance OA if first maximum is formed at A. Wavelength of light emitted by source is lambda

Answer»

`(Dlambda SEC theta)/(d+LAMBDA tan theta)`
`(D lambda sec theta)/(d+lambda sin theta)`
`(D lambda COS theta)/(d+lambda tan theta)`
`(D lambda sec theta tan theta)/(d+lambda tan theta)`

Solution :
`OB = y tan theta`
`O'B = D-y tan theta`
position of 1st maximum above the axis
`y = (lambda(O'B))/(d)`
`y = (lambda(D - y tan theta))/(d) = (lambda D)/(d) - (lambda y tan theta)/(d)`
`y[1+(lambda tan theta)/(d)] = (lambda D)/(d)`
`y = (lambda D)/(d+lambda tan theta)`
Then position of 1st maximum from centre of SCREEN is OA
`Cos theta = (y)/(OA)`
`OA = y sec theta`
`:.OA = (lambda D sec theta)/(d + lambda tan theta)`


Discussion

No Comment Found

Related InterviewSolutions