InterviewSolution
Saved Bookmarks
| 1. |
In a triangle ABC, `cos 3A+cos 3B+cos3C=1` and `angleA+angleBltangleC`, then find possible measure of `angleC`. |
|
Answer» Correct Answer - `120^(@)` `cos3A+cos3B+cos 3C=1` `rARr 2cos(3(A+B))/(2)cos(3(A-B))/(2)=sin^(2)(3C)/(2)` `rARr -sin(3C)/(2)cos(3(A-B))/(2)=sin^(2)(3C)/(2)` `rArr sin(3C)/(2)[cos(3(A-B))/(2)-cos(3(A+B))/(2))0` `rArr 2sin(3A)/(2)sin(3B)/(2)sin(3C)/(2)=0` |
|