InterviewSolution
Saved Bookmarks
| 1. |
In a triangle ABC, if a, b, c are in A.P. and `(b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2`, then find the value of sin B |
|
Answer» Correct Answer - `(1)/(2)` `(b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2` `rArr 2 sin B cos C + 2 sin C cos B + 2 sin B cos A + 2 sin B cos B = 2` `rArr sin (B + C) + sin (A + B) = 1` `rArr sin A + sin C = 1` `rArr sin B = (1)/(2) " " ("As " 2 sin B = sin A + sin C)` |
|